Copied to
clipboard

G = C23×D20order 320 = 26·5

Direct product of C23 and D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23×D20, C202C24, D101C24, C10.3C25, C24.82D10, C51(D4×C23), (C23×C4)⋊7D5, C42(C23×D5), (C23×C20)⋊9C2, (D5×C24)⋊4C2, C101(C22×D4), C2.4(D5×C24), (C2×C20)⋊14C23, (C22×C10)⋊16D4, (C22×C4)⋊45D10, (C22×D5)⋊7C23, (C2×C10).325C24, (C22×C20)⋊61C22, (C23×D5)⋊22C22, C22.53(C23×D5), C23.346(C22×D5), (C22×C10).432C23, (C23×C10).115C22, (C2×C10)⋊12(C2×D4), (C2×C4)⋊11(C22×D5), SmallGroup(320,1610)

Series: Derived Chief Lower central Upper central

C1C10 — C23×D20
C1C5C10D10C22×D5C23×D5D5×C24 — C23×D20
C5C10 — C23×D20
C1C24C23×C4

Generators and relations for C23×D20
 G = < a,b,c,d,e | a2=b2=c2=d20=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 5150 in 1362 conjugacy classes, 543 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, D4, C23, C23, D5, C10, C10, C22×C4, C2×D4, C24, C24, C20, D10, D10, C2×C10, C23×C4, C22×D4, C25, D20, C2×C20, C22×D5, C22×D5, C22×C10, D4×C23, C2×D20, C22×C20, C23×D5, C23×D5, C23×C10, C22×D20, C23×C20, D5×C24, C23×D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C25, D20, C22×D5, D4×C23, C2×D20, C23×D5, C22×D20, D5×C24, C23×D20

Smallest permutation representation of C23×D20
On 160 points
Generators in S160
(1 120)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 110)(12 111)(13 112)(14 113)(15 114)(16 115)(17 116)(18 117)(19 118)(20 119)(21 100)(22 81)(23 82)(24 83)(25 84)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(37 96)(38 97)(39 98)(40 99)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 73)(50 74)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(57 61)(58 62)(59 63)(60 64)(121 143)(122 144)(123 145)(124 146)(125 147)(126 148)(127 149)(128 150)(129 151)(130 152)(131 153)(132 154)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 141)(140 142)
(1 157)(2 158)(3 159)(4 160)(5 141)(6 142)(7 143)(8 144)(9 145)(10 146)(11 147)(12 148)(13 149)(14 150)(15 151)(16 152)(17 153)(18 154)(19 155)(20 156)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)(30 59)(31 60)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 49)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(101 136)(102 137)(103 138)(104 139)(105 140)(106 121)(107 122)(108 123)(109 124)(110 125)(111 126)(112 127)(113 128)(114 129)(115 130)(116 131)(117 132)(118 133)(119 134)(120 135)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 61)(20 62)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 121)(37 122)(38 123)(39 124)(40 125)(41 102)(42 103)(43 104)(44 105)(45 106)(46 107)(47 108)(48 109)(49 110)(50 111)(51 112)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 101)(81 149)(82 150)(83 151)(84 152)(85 153)(86 154)(87 155)(88 156)(89 157)(90 158)(91 159)(92 160)(93 141)(94 142)(95 143)(96 144)(97 145)(98 146)(99 147)(100 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 141)(2 160)(3 159)(4 158)(5 157)(6 156)(7 155)(8 154)(9 153)(10 152)(11 151)(12 150)(13 149)(14 148)(15 147)(16 146)(17 145)(18 144)(19 143)(20 142)(21 52)(22 51)(23 50)(24 49)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 60)(34 59)(35 58)(36 57)(37 56)(38 55)(39 54)(40 53)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 100)(77 99)(78 98)(79 97)(80 96)(101 138)(102 137)(103 136)(104 135)(105 134)(106 133)(107 132)(108 131)(109 130)(110 129)(111 128)(112 127)(113 126)(114 125)(115 124)(116 123)(117 122)(118 121)(119 140)(120 139)

G:=sub<Sym(160)| (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,61)(58,62)(59,63)(60,64)(121,143)(122,144)(123,145)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,141)(140,142), (1,157)(2,158)(3,159)(4,160)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,136)(102,137)(103,138)(104,139)(105,140)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,61)(20,62)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,101)(81,149)(82,150)(83,151)(84,152)(85,153)(86,154)(87,155)(88,156)(89,157)(90,158)(91,159)(92,160)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,141)(2,160)(3,159)(4,158)(5,157)(6,156)(7,155)(8,154)(9,153)(10,152)(11,151)(12,150)(13,149)(14,148)(15,147)(16,146)(17,145)(18,144)(19,143)(20,142)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,100)(77,99)(78,98)(79,97)(80,96)(101,138)(102,137)(103,136)(104,135)(105,134)(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)(113,126)(114,125)(115,124)(116,123)(117,122)(118,121)(119,140)(120,139)>;

G:=Group( (1,120)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,61)(58,62)(59,63)(60,64)(121,143)(122,144)(123,145)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,141)(140,142), (1,157)(2,158)(3,159)(4,160)(5,141)(6,142)(7,143)(8,144)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(101,136)(102,137)(103,138)(104,139)(105,140)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,61)(20,62)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,109)(49,110)(50,111)(51,112)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,101)(81,149)(82,150)(83,151)(84,152)(85,153)(86,154)(87,155)(88,156)(89,157)(90,158)(91,159)(92,160)(93,141)(94,142)(95,143)(96,144)(97,145)(98,146)(99,147)(100,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,141)(2,160)(3,159)(4,158)(5,157)(6,156)(7,155)(8,154)(9,153)(10,152)(11,151)(12,150)(13,149)(14,148)(15,147)(16,146)(17,145)(18,144)(19,143)(20,142)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,60)(34,59)(35,58)(36,57)(37,56)(38,55)(39,54)(40,53)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,100)(77,99)(78,98)(79,97)(80,96)(101,138)(102,137)(103,136)(104,135)(105,134)(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)(113,126)(114,125)(115,124)(116,123)(117,122)(118,121)(119,140)(120,139) );

G=PermutationGroup([[(1,120),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,110),(12,111),(13,112),(14,113),(15,114),(16,115),(17,116),(18,117),(19,118),(20,119),(21,100),(22,81),(23,82),(24,83),(25,84),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(37,96),(38,97),(39,98),(40,99),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,73),(50,74),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(57,61),(58,62),(59,63),(60,64),(121,143),(122,144),(123,145),(124,146),(125,147),(126,148),(127,149),(128,150),(129,151),(130,152),(131,153),(132,154),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,141),(140,142)], [(1,157),(2,158),(3,159),(4,160),(5,141),(6,142),(7,143),(8,144),(9,145),(10,146),(11,147),(12,148),(13,149),(14,150),(15,151),(16,152),(17,153),(18,154),(19,155),(20,156),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58),(30,59),(31,60),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,49),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(101,136),(102,137),(103,138),(104,139),(105,140),(106,121),(107,122),(108,123),(109,124),(110,125),(111,126),(112,127),(113,128),(114,129),(115,130),(116,131),(117,132),(118,133),(119,134),(120,135)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,61),(20,62),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,121),(37,122),(38,123),(39,124),(40,125),(41,102),(42,103),(43,104),(44,105),(45,106),(46,107),(47,108),(48,109),(49,110),(50,111),(51,112),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,101),(81,149),(82,150),(83,151),(84,152),(85,153),(86,154),(87,155),(88,156),(89,157),(90,158),(91,159),(92,160),(93,141),(94,142),(95,143),(96,144),(97,145),(98,146),(99,147),(100,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,141),(2,160),(3,159),(4,158),(5,157),(6,156),(7,155),(8,154),(9,153),(10,152),(11,151),(12,150),(13,149),(14,148),(15,147),(16,146),(17,145),(18,144),(19,143),(20,142),(21,52),(22,51),(23,50),(24,49),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,60),(34,59),(35,58),(36,57),(37,56),(38,55),(39,54),(40,53),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,100),(77,99),(78,98),(79,97),(80,96),(101,138),(102,137),(103,136),(104,135),(105,134),(106,133),(107,132),(108,131),(109,130),(110,129),(111,128),(112,127),(113,126),(114,125),(115,124),(116,123),(117,122),(118,121),(119,140),(120,139)]])

104 conjugacy classes

class 1 2A···2O2P···2AE4A···4H5A5B10A···10AD20A···20AF
order12···22···24···45510···1020···20
size11···110···102···2222···22···2

104 irreducible representations

dim111122222
type+++++++++
imageC1C2C2C2D4D5D10D10D20
kernelC23×D20C22×D20C23×C20D5×C24C22×C10C23×C4C22×C4C24C23
# reps128128228232

Matrix representation of C23×D20 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
100000
0400000
001000
000100
0000400
0000040
,
4000000
010000
001000
000100
0000400
0000040
,
100000
010000
0014000
0083400
00002839
0000216
,
4000000
010000
0040000
0033100
0000040
0000400

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,28,2,0,0,0,0,39,16],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;

C23×D20 in GAP, Magma, Sage, TeX

C_2^3\times D_{20}
% in TeX

G:=Group("C2^3xD20");
// GroupNames label

G:=SmallGroup(320,1610);
// by ID

G=gap.SmallGroup(320,1610);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽